
CoreCFI Handbook

v2.0

Actel Corporation, Mountain View, CA 94043

© 2007 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200094-0

Release: March 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Core Overview . 5

Device Utilization and Performance . 6

1 Functional Description . 7

2 Tool Flows . 9
Licenses . 9

CoreConsole . 9

Importing into Libero IDE . 10

Simulation Flows . 10

Synthesis in Libero IDE . 10

Place-and-Route in Libero IDE . 10

3 Interface Description . 11
Parameters . 11

Signals . 11

4 Supported CFI Commands . 15
Read . 16

Write . 16

Read Query Command . 16

Read ID Codes Command . 21

Read Array Command . 22

Read Status Command . 23

Clear Status Command . 24

Erase Page Command . 25

Single Write Command . 26

Multi-Write Command . 27

Page Lock Command . 29

Page Unlock Command . 30

Timing Diagrams . 31

5 Implementation Hints . 35
Usage with Internal Flash Memory . 35

Generating and Programming the CFI Query Database . 35

6 Testbench Operation and Modification . 39
Verification Testbench . 39

Simple Application Testbench . 40

A VHDL Testbench Support Routines . 41
CoreCFI Handbook v2.0 3

Table of Contents
B Product Support . 43
Customer Service . 43

Actel Customer Technical Support Center . 43

Actel Technical Support . 43

Website . 43

Contacting the Customer Technical Support Center . 43

Index . 45
4 CoreCFI Handbook v2.0

Introduction

Core Overview
CoreCFI (Common Flash Interface) provides an industry standard external interface to the embedded Flash memory
blocks within the Fusion family of Actel devices. Using CoreCFI, the user is able to communicate (i.e., read, write, and
erase) with the embedded Flash memory. This IP block is targeted to provide a functional subset of CoreCFI with a
design emphasis given to minimizing design size. Note that this handbook focuses on the operation of CoreCFI and
does not provide detail on the structure or the behavior of the Fusion Flash memory. Refer to the Fusion Family of
Mixed-Signal Flash FPGAs datasheet for details on the Fusion Flash memory. Note that CoreCFI has been designed to
be used with an external device, though it can be adapted for use with user-created custom logic within the Fusion
FPGA fabric.

CoreCFI has two top-level parameters (Verilog) or generics (VHDL) used to configure the core. For a detailed
description of the parameters/generics, refer to Table 3-1 on page 11. CoreCFI block diagram is shown in Figure 1. A
typical application using CoreCFI is shown in Figure 2 on page 6. Note that the D pin output enable signal is inverted.

Figure 1 · CoreCFI Block Diagram

FM_ADDRESS[17:0]
FM_DATA_IN[31:0]

FM_DATA_WIDTH[1:0]
FM_DATA_OUT[31:0]

FM_STATUS[1:0]

FM_READ
FM_WRITE

FM_PROGRAM
FM_ERASE_PAGE

FM_OVERWRITE_PROTECT
FM_UNPROTECT_PAGE

FM_DISCARD_PAGE
FM_SPARE_PAGE

FM_PAGE_STATUS
FM_BUSY

DQ_OE_N
BYTE_N
WORD_N
CE_N
OE_N
WE_N
RP_N
RY_BY_N

A[17:0]
DQ_IN[31:0]
DQ_OUT[31:0]

CFI Interface FSM

CLK

CFI
Interface

Flash
Memory
InterfaceFlash Memory

Control Logic

CoreCFI
CoreCFI Handbook v2.0 5

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Introduction
Figure 2 · CoreCFI Typical Application

Device Utilization and Performance
CoreCFI has been implemented in the Actel FusionTM device family. A summary of the device utilization for CoreCFI
is listed in Table 1 and Table 2.

Fusion FPGA

External CPU

A[17:0]

D[31:0]

CoreCFI

Fusion Flash
Memory

Flash Memory
Interface

A[17:0]

D_in[31:0]

D_out[31:0]

DQ_OE_N

CE_N
OE_N
WE_N
BYTE_N
WORD_N
RP_N
RY_BY_N

Table 1 · CoreCFI Device Utilization and Performance (minimum configuration)

Family
Cells or Tiles

Device Utilization Performance
Sequential Combinatorial Total

Fusion 175 294 469 AFS090 20% 100 MHz

Note: Data in this table was achieved using typical synthesis and layout settings. Top-level
parameters/generics that differ from the default values were set as follows: SIZE = 8.

Table 2 · CoreCFI Device Utilization and Performance (maximum configuration)

Family
Cells or Tiles

Device Utilization Performance
Sequential Combinatorial Total

Fusion 177 306 483 AFS090 21% 100 MHz

Note: Data in this table was achieved using typical synthesis and layout settings. Top-level
parameters/generics that differ from the default values were set as follows: SIZE = 18.
6 CoreCFI Handbook v2.0

CoreCFI Handbook v2.0 7

1
Functional Description

The CoreCFI design is primarily a state machine that controls the interfaces to the Fusion Flash memory and the
external CFI interface. CoreCFI implements a subset of the Common Flash Memory Interface Specification Release
2.0. It supports the following:

• Read and Read Query, Automatic Write and Erase, Lock, and Status operations

• 128-byte write page buffer and write/erase size

• 16-byte page read buffer

• 8-bit, 16-bit, and 32-bit operation

2
Tool Flows

Licenses
CoreCFI is licensed in three ways; depending on your license tool flow, functionality may be limited.

Evaluation
The precompiled simulation libraries provided allow the core to be instantiated in CoreConsole and simulated within
Actel Libero® Integrated Design Environment (IDE) as described in “Simulation Flows” on page 10. The design cannot
be synthesized, as the source code is not provided.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with CoreConsole. Simulation,
Synthesis, and Layout can be performed with Libero IDE. The RTL code for the core is obfuscated, and some of the
testbench source files are not provided. Instead, they are precompiled into the compiled simulation library.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
CoreCFI is preinstalled in the CoreConsole IP Deployment Platform (IDP). To use the core,1 click and drag it from the
IP core list into the main window. The core can then be configured using the configuration GUI within CoreConsole, as
shown in Figure 2-1 and Figure 2-2 on page 10. The CoreConsole project can be exported to Libero IDE at this point,
providing access just to CoreCFI, or other IP blocks can be interconnected, allowing the complete system to be exported
from CoreConsole to Libero IDE.

Figure 2-1 · CoreCFI Configuration within CoreConsole

1. A CoreCFI license is required to generate the design for export to Libero IDE for Simulation and Synthesis .
CoreCFI Handbook v2.0 9

Tool Flows
Figure 2-2 · CoreCFI Configuration within CoreConsole – Testbench Selection

Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core can be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will then install
the core and the selected testbenches, along with constraints and documentation, into its project.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

Simulation Flows
To run simulations, the required testbench flow must be selected within CoreConsole, then Save & Generate must be
run from the Generate pane. The required testbench is selected through the Core Testbench Configuration GUI. Two
simulation testbenches are supported with CoreCFI:

• Simple CoreCFI application testbench (VHDL and Verilog)

• Full CoreCFI verification testbench (VHDL only)

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files. To run either the
simple application or the full verification environment, simply set the design root to the CoreCFI instantiation in the
Libero IDE design hierarchy and click the Simulation icon in the Libero Design Flow window. This will invoke
ModelSim® and automatically run the simulation.

Synthesis in Libero IDE
Having set the design root appropriately, click the Synthesis icon in Libero IDE. The Synthesis window appears,
displaying the Synplicity® project. Set Synplicity to use the Verilog 2001 standard if Verilog is being used. To run
Synthesis, click the Run icon.

Place-and-Route in Libero IDE
Having set the design root appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
CoreCFI requires no special place-and-route settings.
10 CoreCFI Handbook v2.0

3
Interface Description

Parameters
CoreCFI has parameters (Verilog) and generics (VHDL), described in Table 3-1, for configuring the RTL code. All
parameters and generics are integers.

Signals
The port signals for the CoreCFI macro are defined in Table 3-2 on page 12 and illustrated in Figure 3-1. CoreCFI has
187 I/O signals. The user will need to create the device D pin by instantiating tristate I/O pads using the DQ_OE_N
signal and the CoreCFI DQ_IN and DQ_OUT signals. This core is typically used with external device package pins (A,
D, CE_N, OE_N, WE_N, RP_N, BYTE_N, WORD_N, and RY_BY_N as I/O pads—a total of 57 external I/Os),
and it does not directly instantiate the Flash memory, though it does interface with the Flash memory, as shown in
Figure 2 on page 6 (Flash memory interface signals begin with ìFM_î). The user instantiates the Flash memory with the
SmartGen software tool provided within Libero IDE.

Figure 3-1 · CoreCFI I/O Signal Diagram

Table 3-1 · CoreCFI Parameter/Generic Descriptions

Parameter Values Description

FAMILY 0 to 99
Must be set to match the supported FPGA family:

17 – Fusion

SIZE Integer 6 to 18
Indicates the number of address bits used by CoreCFI (i.e., the size of the Fusion Flash memory accessed
by CoreCFI—e.g., 10 = 1 kB, 12 = 4 kB, 16 = 64 kB, 18 = 256 kB).

DQ_OUT[31:0]
RY_BY_N

DQ_OE_N

BYTE_N
WORD_N
A[17:0]
DQ_IN[31:0]
CE_N
OE_N
WE_N
RP_N

CLK
FM_BUSY
FM_DATA_OUT[31:0]
FM_STATUS[1:0]

FM_READ
FM_WRITE

FM_PROGRAM
FM_ERASE_PAGE

FM_OVERWRITE_PROTECT
FM_UNPROTECT_PAGE

FM_DISCARD_PAGE
FM_SPARE_PAGE

FM_PAGE_STATUS
FM_ADDRESS[17:0]
FM_DATA_IN[31:0]

FM_DATA_WIDTH[1:0]
CoreCFI Handbook v2.0 11

Interface Description
Table 3-2 · CoreCFI I/O Signal Descriptions

Name Type Description

WORD_N

BYTE_N
Inputs

Active low. Controls the data width used by CoreCFI:

WORD_N, BYTE_N

X0 = 8-bit mode DQ_IN/OUT[7:0] active

01 = 16-bit mode DQ_IN/OUT[15:0] active

11 = 32-bit mode DQ_IN/OUT[31:0] active

A[17:0] Input

Address inputs during read and write operations. The A[0] input is ignored in 16-bit
mode—A[1] becomes the lowest-order address in 16-bit mode. The A[1:0] bits are
ignored in 32-bit mode—A[2] becomes the lowest-order address in 32-bit mode (see the
WORD_N, BYTE_N description).

DQ_IN[31:0] Input
Data input pins during any write operation. DQ_IN[31:8] are ignored in 8-bit mode;
DQ_IN[31:16] are ignored in 16-bit mode. The user should connect this to the receiver
side of the CFI “D” bidirectional pads.

CE_N Input
CoreCFI is selected when CE_N is asserted. This signal is active low and must be asserted
for reads or writes to be executed.

OE_N Input

DQ_OUT[31:0] will be enabled onto the external CFI databus when CE_N and OE_N
are both asserted (assuming the user has used the DQ_OE_N signal as the active low
output enable for the DQ_OUT pads—see the DQ_OE_N description). This signal is
active low.

WE_N Input

Writes to CoreCFI will be enabled when CE_N and WE_N are both asserted. Writes are
ignored if CE_N or WE_N is not asserted. Writes take one clock cycle to execute. The
actual command is executed on the clock edge following the WE_N sample. At the end of a
write, both CE_N and WE_N need to be synchronously deasserted. This signal is active low.

RP_N Input

Active low asynchronous reset. This signal resets the state of CoreCFI when asserted. It is
recommended that this signal not be asserted while RY_BY_N is asserted; otherwise, the
Fusion Flash memory device may be damaged. Reset places CoreCFI in Read Array mode,
sets the status to 80h (ready), and tristates the data pins.

DQ_OUT[31:0] Output
Data output pins during any read operation. DQ_OUT[31:8] are unused in 8-bit mode;
DQ_OUT[31:16] are unused in 16-bit mode. The user should use this as the driver to the
CFI “D” bidirectional pads.

DQ_OE_N Output
Active low enable for the DQ_OUT pins. The user should use this signal as the active low
output enable for the CFI “D” bidirectional pads. This signal is asserted when CE_N and
OE_N are both asserted.

Note: All signals are active high (logic 1) unless otherwise noted.
12 CoreCFI Handbook v2.0

Signals
RY_BY_N Output

Active low busy signal. When asserted, indicates that the Fusion Flash memory is
performing a write operation. This signal is not asserted during a read operation. It is the
user's responsibility to hold CE_N LOW for some period of time while the read data
becomes valid. The latency will be lower for consecutive same-page accesses and larger for
new read operations or cross-page-boundary accesses. Typical timings are 2 clock cycles
and 5 clock cycles, respectively, for the above read operations. Alternatively, the user can
monitor the Fusion memory FM_BUSY signal, which is asserted during a read operation.
Refer to the Fusion Family of Mixed-Signal Flash FPGAs datasheet for specific timing
information on reading data from the Flash memory.

CLK Input
Flash memory interface clock. All operations and status are synchronous to the rising edge
of this clock signal. Note that CoreCFI synchronizes the asynchronous inputs using this
clock.

FM_BUSY Input When asserted, indicates that the Fusion Flash memory is performing an operation.

FM_DATA_OUT[31:0] Input Data returned from the Fusion Flash memory during a read

FM_STATUS[1:0] Input Status of the last operation completed

FM_READ Output When asserted, this signal initiates a Flash memory read operation.

FM_WRITE Output
When asserted, this signal initiates writing the value present on the FM_DATA_IN[31:0]
outputs to the assembly buffer of the Flash memory within the Fusion device.

FM_PROGRAM Output
When asserted, this signal causes the contents of the assembly buffer to be written into the
addressed cell array page in the Flash memory within the Fusion device.

FM_ERASE_PAGE Output When asserted, the addressed page is erased (all zeroes).

FM_OVERWRITE_PROTECT Output
When asserted, all program operations will set the overwrite protect bit of the page being
programmed.

FM_UNPROTECT_PAGE Output
When asserted, the page addressed is copied into the Page Buffer, and the Page Buffer is
made writable.

FM_DISCARD_PAGE Output
When asserted, the contents of the Page Buffer are discarded so a new page write can be
started.

FM_SPARE_PAGE Output When asserted, the sector addressed is used to access the spare page within that sector.

FM_PAGE_STATUS Output
When this signal is asserted during a read, it indicates that the status for the currently
addressed page is being accessed.

FM_ADDRESS[17:0] Output
These output signals are used as the byte offset in the cell array, assembly buffer, or special
function register interface within the Fusion Flash memory.

Table 3-2 · CoreCFI I/O Signal Descriptions (continued)

Name Type Description

Note: All signals are active high (logic 1) unless otherwise noted.
CoreCFI Handbook v2.0 13

http://www.actel.com/documents/Fusion_DS.pdf

Interface Description
FM_DATA_IN[31:0] Output Data to be written to the Fusion Flash memory

FM_DATA_WIDTH[1:0] Output

These output signals are used to select the data width mode of the Fusion Flash memory:

00 = 1 byte in FM_DATA_IN/OUT[7:0] active

01 = 2 bytes in FM_DATA_IN/OUT[15:0] active

10 = 4 bytes in FM_DATA_IN/OUT[31:0] active

11 = 4 bytes in FM_DATA_IN/OUT[31:0] active

Table 3-2 · CoreCFI I/O Signal Descriptions (continued)

Name Type Description

Note: All signals are active high (logic 1) unless otherwise noted.
14 CoreCFI Handbook v2.0

4
Supported CFI Commands

CoreCFI supports the Read Query, Read, Automatic Erase, Automatic Write, Lock, and Status CFI operations. The
command descriptions are summarized in Table 4-1. The bus cycles are defined in Figure 4-1 on page 16, Figure 4-2 on
page 21, and Figure 4-3 on page 22.

Table 4-1 · Command Descriptions

Command
No. of

Bus
Cycles

First Bus Cycle Second Bus Cycle
Notes

Operation Address Data Operation Address Data

Read Query 2 Write X 98h Read QA QD 1

Read ID Codes 2 Write X 90h Read IA ID

Read Array 1 or 2 Write X FFh Read AA AD 2

Read Status 2 Write X 70h Read X SD

Clear Status 1 Write X 50h

Erase Page 2 Write PA 20h Write PA D0h 3

Single Write 2 Write X 40h Write AA AD 4

Multi-Write 2 Write PA E8h Write PA N 5, 6

Page Lock 2 Write X 60h Write PA 01h 7

Page Unlock 2 Write X 60h Write PA D0h

Legend:

X = Any address within the device

QA = Query Address

QD = Query Data

IA = Identifier Address

ID = Identifier Data

A = Array Address

AD = Array Data

SD = Status Data

PA = Any address within the page

Notes:

1. The Read Query does not require the address to be 55h.

2. The Write portion of the Read Array command is only needed if not already in Read Array mode.

3. The Erase Page operation will fail if the page is locked.

4. The page portion of the address is ignored for the second bus cycle.

5. The page specified by AA is the page the data will be written to. The page portion of the address is ignored once the Multi-

Write command has been sent (note that this means that writes will wrap around onto the same current page if the page
address goes outside the PA specified with the first bus cycle).

6. N is the number of elements (bytes / words / double words), minus one, to be written to the write buffer. Expected count ranges

are N = 00h to N = 7Fh (e.g., 1 to 128 bytes) in 8-bit mode, N = 00h to N = 003Fh in 16-bit mode,
and N = 00h to N = 1Fh in 32-bit mode. Bus cycles 3 and higher are for writing data into the write buffer. The confirm
command (D0h) is expected after exactly N + 1 write cycles; any other command at that point in the sequence will prevent the

transfer of the buffer to the array (the write will be aborted).

7. Locking a page prevents erasing or writing new data to the page.

8. All new commands are ignored while the device is busy.
CoreCFI Handbook v2.0 15

Supported CFI Commands
Read
CoreCFI Read operations, other than Read Array, are always preceded by a Write command to set up the read sequence.
A preceding write is only required for the Read Array operation when the device is not already in Read Array mode.
During read operations, CE_N and OE_N must be asserted, and WE_N and RP_N must be deasserted. The Fusion
Flash memory device contains a 16-byte read page buffer that enables fast data transfers.

Write
All CoreCFI operations, other than Read Array, are always preceded by a Write command to set up the read sequence. A
preceding write is only required for the Read Array operation when the device is not already in Read Array mode.
During write operations, CE_N and WE_N must be asserted, and OE_N and RP_N must be deasserted.

Read Query Command
The Read Query command causes CoreCFI to load the query database from a spare page in the Fusion Flash memory.
The algorithm for the Read Query command is shown in Figure 4-1. The query data for CoreCFI largely follows the
Intel format and is summarized in Table 4-2 on page 17 through Table 4-5 on page 19. Query data is always supplied on
the least significant 8 bits—D[7:0]. The address of the query data starts at 10h, 20h, or 40h in 32-bit, 16-bit, or 8-bit
mode, respectively. The spare page address will be specified by the SmartGen tool through the use of the
QUERY_PAGE generic/parameter. The SmartGen tool will also generate the query data to be stored in the specified
spare page.

Figure 4-1 · CoreCFI Read Query Flow Diagram

Start

Write Command
Read Query (0x98)

to Any Address

Read from Query Address
Query Data Will Be Returned

Finished Reading
Query Data?

Read Query Complete

Yes

No
16 CoreCFI Handbook v2.0

Read Query Command
Table 4-2 · CFI Query Identification

Offset
[17:2]

Offset
[17:1]

Offset
[17:0]

Length
(bytes)

Description
Hex
Data

Notes

0x00 0x00 0x00 1 Manufacturer Code 0x5A

0x01 0x02 0x04 1 Device Size Code SIZE
Set to hex
representation of SIZE
generic

0x010

0x011

0x012

0x020

0x022

0x024

0x040

0x044

0x048

3 Query-unique ASCII string “QRY”

0x51

0x52

0x59

“Q”

“R”

“Y”

0x013

0x014

0x026

0x028

0x04C

0x050
2

Primary Algorithm Command Set and Control Interface ID
Code 16-bit ID code defining a specific algorithm (refer to
JEP137)

0x00

0x00

No command set
specified

0x015

0x016

0x02A

0x02C

0x054

0x058
2

Address for Primary Algorithm extended Query, Table 4-5 on
page 19

Address 0000h means that no extended table exists.

0x31

0x00
Table at offset 0x0031

0x017

0x018

0x02E

0x030

0x05C

0x060
2

Alternative Algorithm Command Set and Control Interface
ID Code second specific algorithm supported by the device
(refer to JEP137)

ID Code = 0000h means that no alternate algorithm is
employed.

00x00

0x00

No alternate command
set exists in device.

0x019

0x01A

0x032

0x034

0x064

0x068
2

Address for Alternative Algorithm extended Query, Table 4-6
on page 21

Address 0000h means that no alternate extended table exists.

0x00

0x00

No alternate extended
query exists in device.
CoreCFI Handbook v2.0 17

Supported CFI Commands
Table 4-3 · CFI Query System Interface Information

Offset
[17:2]

Offset
[17:1]

Offset
[17:0]

Length
(bytes)

Description
Hex
Data

Notes

0x01B 0x036 0x06C 1

VCC Logic Supply Minimum

Program/Erase or Write voltage

Bits 7–4: BCD value in volts

Bits 3–0: BCD value in hundreds of millivolts

0x30 3.0 V

0x01C 0x038 0x070 1

VCC Logic Supply Maximum

Program/Erase or Write voltage

Bits 7–4: BCD value in volts

Bits 3–0: BCD value in hundreds of millivolts

0x36 3.6 V

0x01D 0x03A 0x074 1

VPP (programming) Supply Minimum

Program/Erase voltage

Bits 7–4: Hex value in volts

Bits 3–0: BCD value in hundreds of millivolts

0x00 0.0 V – No VPP pin

0x01E 0x03C 0x078 1

VPP (programming) Supply Minimum

Program/Erase voltage

Bits 7–4: HEX value in volts

Bits 3–0: BCD value in hundreds of millivolts

0x00 0.0 V – No VPP pin

0x01F 0x03E 0x07C 1
Typical timeout per single byte/word/dword program, 2N μs
(if supported; 00h = not supported)

0x14 16 ms

0x020 0x040 0x080 1
Typical timeout for maximum-size multi-byte program, 2N μs
(if supported; 00h = not supported)

0x14 16 ms

0x021 0x042 0x084 1
Typical timeout per individual block erase, 2N ms
(if supported; 00h = not supported)

0x04 16 ms

0x022 0x044 0x088 1
Typical timeout for full chip erase, 2N
(if supported; 00h = not supported)

0x00 Not supported

0x023 0x046 0x08C 1
Maximum timeout for byte/word/dword program, 2N times typical
(offset 1Fh) (00h = not supported)

0x01 32 ms

0x024 0x048 0x090 1
Maximum timeout for multi-byte program, 2N times typical
(offset 20h) (00h = not supported)

0x01 32 ms

0x025 0x04A 0x094 1
Maximum timeout per individual block erase, 2N times typical
(offset 21h) (00h = not supported)

0x01 32 ms

0x026 0x04C 0x098 1
Maximum timeout for chip erase, 2N times typical
(offset 22h) (00h = not supported)

0x00 Not supported
18 CoreCFI Handbook v2.0

Read Query Command
Table 4-4 · CFI Query Device Geometry Definitions

Offset
[17:2]

Offset
[17:1]

Offset
[17:0]

Length
(bytes)

Description
Hex
Data

Notes

0x027 0x04E 0x09C 1 Device Size = 2N in number of bytes 0x12 262,144 bytes

0x028

0x029

0x050

0x052

0x0A0

0x0A4
2 Flash Device Interface Code description (refer to JEP137)

0x02

0x00

16/8 async, but
also supports 32

0x02A

0x02B

0x054

0x056

0x0A8

0x0AC
2 Maximum number of bytes in multi-byte program = 2N 0x07

0x00
128 bytes

0x02C 0x058 0x0B0 1

Number of Erase Block Regions within device. Bits 7:0 = x = number
of erase block regions

x = 0 means no erase blocking, i.e., the device erases at once in “bulk.”

x specifies the number of regions within the device containing one
erase block region.

x01
Symmetrically
blocked regions

0x02D

0x02E

0x02F

0x030

0x05A

0x05C

0x05E

0x060

0x0B4

0x0B8

0x0BC

0x0C0

4

Erase Block Region Information

Bits 31:16 = z, where the erase block(s) within this region are z × 25
bytes in size.

The value z = 0 is used for 128-byte block size.

Bits 15:0 = y, where y + 1 = number of erase blocks of identical size
within the erase block region

0x00

0x00

0xFF

0x07

128-byte regions

2,048 erase
block regions

Table 4-5 · CFI Primary Vendor-Specific Extended Query

Offset
[17:2]

Offset
[17:1]

Offset
[17:0]

Length
(bytes)

Description
Hex
Data

Notes

0x031

0x032

0x033

0x062

0x064

0x066

0x0C4

0x0C8

0x0CC

3
Primary Algorithm extended Query table; unique ASCII string
“PRI”

0x50

0x52

0x49

“P”

“R”

“I”

0x034 0x068 0x0D0 1 Major version number, ASCII 0x31 “1”

0x035 0x06A 0x0D4 1 Minor version number, ASCII 0x31 “1”

0x036

0x037

0x038

0x039

0x06C

0x06E

0x070

0x072

0x0D8

0x0Dc

0x0E0

0x0E4

4

Optional feature and command support (1 = yes, 0 = no)

Bits 9–3 are reserved; undefined bits are 0.

If bit 31 is 1, another 31-bit field of optional features is at the end of
the bit 30 field.

Bit 0: Chip erase supported = no = 0

Bit 1: Suspend erase supported = no = 0

Bit 2: Suspend program supported = no = 0

Bit 3: Legacy lock/unlock supported = no = 0

Bit 4: Queued erase supported = no = 0

Bit 5: Instant individual block locking supported = no = 0

Bit 6: Protection bits supported = no = 0

Bit 7: Page mode read supported = yes = 1

0x80

0x00

0x00

0x00

Page mode
read supported
CoreCFI Handbook v2.0 19

Supported CFI Commands
0x03A 0x074 0x0E8 1

Supported functions after suspend: Read Array, Status, Query.
Other supported operations:

Bits 1–7: Reserved; undefined bits are 0.

Bit 0: Program supported after erase suspend = yes = 1

0x00 No suspend

0x03B

0x03C

0x076

0x078

0x0EC

0x0F0
2

Block status register mask, 16 bits; active bits are 1; undefined bits
are 0.

0x00

0x00
No block status

0x03D 0x07A 0x0F4 1

VCC Logic Supply Highest Performance

Program/Erase voltage

Bits 0–3: BCD value in hundreds of millivolts

Bits 4–7: BCD value in volts

0x33 3.3 V

0x03E 0x07C 0x0F8 1

VPP Optimum Program/Erase Supply voltage

Bits 0–3: BCD value in hundreds of millivolts

Bits 4–7: Hex value in volts

0x00
0.0 V – No VPP
pin

0x03F 0x07E 0x0FC 1 Number of protection register fields in JEDEC ID space 0x01
No protection
registers

0x040

0x041

0x042

0x043

0x080

0x082

0x084

0x086

0x100

0x104

0x108

0x10C

4

Protection Description

Bits 0–7: Lock/bytes JEDEC-plane physical low address

Bits 8–15: Lock/bytes JEDEC-plane physical high address

Bits 16–23: N such that 2N = factory pre-programmed bytes

Bits 24–31: N such that 2N = user-programmable bytes

0x00

0x00

0x00

0x00

No protection
registers are
supported.

0x044 0x088 0x110 1
Page Mode Read Capability. Number of read page bytes = 2N in
number of bytes

0x04 16 bytes

0x045 0x08A 0x114 1 Number of synchronous mode read configuration fields that follow 0x00 No sync burst

0x046 0x08C 0x118 1 Reserved for future use 0x00 –

Table 4-5 · CFI Primary Vendor-Specific Extended Query (continued)

Offset
[17:2]

Offset
[17:1]

Offset
[17:0]

Length
(bytes)

Description
Hex
Data

Notes
20 CoreCFI Handbook v2.0

Read ID Codes Command
Read ID Codes Command
The algorithm for the Read ID command is shown in Figure 4-2. The identifier codes returned are either values stored
in the query data spare page or the lock status of a page in the Flash array.

Figure 4-2 · CoreCFI Read ID Codes Flow Diagram

Table 4-6 · CFI Identifier Codes

Offset
[17:2]

Offset
[17:1]

Offset
[17:0]

Length
(bytes)

Description Notes

0x00 0x00 0x00 1 Manufacturer Code 1

0x01 0x02 0x04 1 Device Size Code 2

BA+0x03 BA+0x04 BA+0x08 1 Page Lock Status 3

Notes:

1. Manufacturer code default value is 0x5A.

2. Device size code is the hex representation of the SIZE generic. For example, the device size code is 0x08 for a 256-byte device

and is 0x12 for a 256 kB device.

3. BA = the base address of the page for which to return status. For example, 0x00080 is the base address for page 1, so address
0x00088 would return the page lock status for page 1, in byte mode. The page lock status is returned on DQ[0] with the other

data bits undefined. DQ[0] = 0: the page is unlocked. DQ[0] = 1: the page is locked.

Write Command
Read Identifier Codes (0x90)

to Any Address

Start

Read from Identifier Code Address
Identifier Code Data Will Be Returned

Finished Reading
Identifier Codes?

Read Identifier Codes
Complete

Yes

No
CoreCFI Handbook v2.0 21

Supported CFI Commands
Read Array Command
The algorithm for the Read command is shown in Figure 4-3. CoreCFI comes out of reset in Read Array mode, and the
Read Array command is not required to read the array after reset.

Figure 4-3 · CoreCFI Read Array Flow Diagram

Write Command
Read Array (0xFF)

to Any Address

Read from Array Address
Array Data Will Be Returned

Finished Reading
Array Data?

Read Array Complete

Yes

No

Start
22 CoreCFI Handbook v2.0

Read Status Command
Read Status Command
The algorithm for the Read Status command is shown in Figure 4-4. The status register can be read to determine the
success of Write, Page Erase, or Lock Page commands. After writing the Read Status command, all subsequent read
operations put out data from the status register until another valid command is written. The status is updated
automatically when OE_N is toggled HIGH. When error conditions cause status register bits S5, S4, or S3 to be set,
they can only be reset by the Clear Status command.

Figure 4-4 · CoreCFI Read Status Flow Diagram

Table 4-7 · Status Register

Status Bit Description

S7 Busy – Indicates CoreCFI is currently performing a command and is not complete: 0 = Busy, 1 = Ready

S6 TBD

S5

Erase and Clear Lock Bit status

1 = Error in Page Erase or Clear Page Lock Bit
0 = Successful Page Erase or Clear Page Lock Bit

Once set, this bit can only be cleared by a Clear Status command.

S4

Write and Set Page Lock Bit status

1 = Error in Write or Set Page Lock Bit
0 = Successful Write or Set Page Lock Bit

Once set, this bit can only be cleared by a Clear Status command.

S3–S2 TBD

S1

Device protection status

1 = Page lock bit detected, operation aborted
0 = Page is unlocked

Once set, this bit can only be cleared by a Clear Status command.

S0 TBD

Start

Write Command
Read Status Register (0x70)

to Any Address

Read from any Address
Status Register Will Be Returned as Data

Finished Reading
Status Register?

Read Status Register
Complete

Yes

No
CoreCFI Handbook v2.0 23

Supported CFI Commands
Clear Status Command
The algorithm for the Clear Status command is shown in Figure 4-5. When error conditions cause status register bits
S5, S4, or S3 to be set, they can only be reset by the Clear Status command.

Figure 4-5 · CoreCFI Clear Status Flow Diagram

Start

Write Command
Clear Status Register (0x50)

to Any Address

Clear Status Register
Complete
24 CoreCFI Handbook v2.0

Erase Page Command
Erase Page Command
The algorithm for the Erase Page command is shown in Figure 4-6. The Erase Page requires two bus cycles to start: the
command itself and a confirm. Once the erase starts, it cannot be interrupted (any subsequent commands are ignored
while the erase is in progress). CoreCFI handles the required sequences, and the user can determine when the erase is
complete by monitoring status bit S7 until busy is no longer indicated (note that the status is updated automatically, and
the Read Status command sequence is not required). Once the Erase Page command has completed, status bits S1 and
S5 should be checked to determine if any page erase error occurred. S1 will be set if the page to be erased is locked. S5
will be set if the Erase Page failed. If any of the error status bits are set, they can only be cleared by a Clear Status
command.

Figure 4-6 · CoreCFI Erase Page Flow Diagram

Start

Write Command
Erase Page (0x20)

to Page Address to Erase

Write Command
Erase Confirm (0xD0)

to Page Address to Erase

Read (poll) the Status Register
or Monitor the RY/BY# Pin

Status Register Bit 7
or RY/BY# Pin

Status Register Bit 1

Status Register Bit 5

Erase Successful Completion

Erase Failed with
Protection Error

Erase Failed with
Programming Error

= 0

= 1

= 0

= 1

= 0

= 1
CoreCFI Handbook v2.0 25

Supported CFI Commands
Single Write Command
The algorithm for the Single Write command is shown in Figure 4-7. The Single Write is used to write a single byte,
word, or double word in 8-bit, 16-bit, or 32-bit mode. It should be noted that the Single Write still results in the entire
page (that the Single Write data is contained within) being written into memory. Therefore, the user should avoid using
single writes where multi-writes are more appropriate (i.e., when more than one location within a page is to be written).
A single write is initiated by executing the Single Write command followed by a write to the desired location (note that
all other commands are ignored once the write is in progress). Once the Write command has completed (i.e., the status
no longer indicates busy—note that the status is updated automatically, and the Read Status command sequence is not
required), status bits S1 and S4 should be checked to determine if any write error occurred. S1 will be set if a write is
attempted on a page that is locked. S4 will be set if the write failed. If any of the error status bits are set, they can only be
cleared by a Clear Status command.

Figure 4-7 · CoreCFI Single Write Flow Diagram

Start

Write Command
Setup Write (0x40)

to Any Address

Write Data to Address Being Programmed

Read (poll) the Status Register
or Monitor the RY/BY# Pin

Status Register Bit 7
or RY/BY# Pin

Status Register Bit 1

Status Register Bit 4

Write Successful Completion

Write Failed with
Protection Error

Write Failed with
Programming Error

= 0

= 1

= 0

= 1

= 0

= 1
26 CoreCFI Handbook v2.0

Multi-Write Command
Multi-Write Command
The algorithm for the Multi-Write command is shown in Figure 4-8 on page 28. The Multi-Write is used to write
multiple bytes, words, or double words in 8-bit, 16-bit, or 32-bit mode. A multi-write is initiated by executing the
Multi-Write command and waiting for the write buffer to become available (i.e., the status no longer indicates busy—
note that the status is updated automatically, and the Read Status command sequence is not required). Status bit S1
should then be checked to make sure that it is not set due to the page being locked.

Once the write buffer if available, the second write with a data value of N is executed. N is the number of elements
(bytes / words / double words), minus one, to be written to the write buffer—the expected ranges are N = 00h to N =
7Fh (e.g., 1 to 128 bytes) in 8-bit mode, N = 00h to N = 003Fh in 16-bit mode, and N = 00h to N = 1Fh in 32-bit mode.

Once N is written, the multiple writes to the desired locations within the page can be made. Note that once the Multi-
Write command has been issued, the page address for the subsequent data writes is ignored (this means that writes will
wrap around onto the current page if the page address goes outside the page address specified with the first bus cycle).
Once the last data value has been written, the confirm command (D0h) is expected after exactly N + 1 write cycles; any
other command at that point in the sequence will prevent the transfer of the buffer to the array (the write will be
aborted). Note that all other command sequences are ignored once the confirm is received and the write to the array is
started. Once the Multi-Write command has completed (i.e., the status no longer indicates busy—note that the status is
updated automatically, and the Read Status command sequence is not required), status bit S4 should be checked to
determine if any write error occurred. If any of the error status bits are set, they can only be cleared by a Clear Status
command.
CoreCFI Handbook v2.0 27

Supported CFI Commands
Figure 4-8 · CoreCFI Multi-Write Flow Diagram

Number of Elements Written
Equal to Element Count?

Abort the Write
to Buffer?

Write the Command
Buffer Program Confirm (0xD0)

to the Page Address

Read (poll) the Status Register
or Monitor the RY/BY# Pin

Status Register Bit 7
or RY/BY# Pin

Status Register Bit 4

Write to Buffer Successful

Write a Command Other than
Buffer Program Confirm

to Any Address

Write to Buffer Aborted
(command sequence error)

Write to Buffer Failed with
Programming Error

= 0 (buffer not ready)

= 1 (Buffer Ready)
= 1

= 0

Yes

No

= 1

= 0

Yes

No

= 1

= 0

Start

Write the Command
Setup Write Buffer (0xE8)

to the Page Address

Read Status Register

Status
Register Bit 7

Write the Element Count (N)
to the Page Address

Write a Buffer Element
to the Device Address

Status
Register Bit 1

Write to Buffer Failed with
Protection Error
28 CoreCFI Handbook v2.0

Page Lock Command
Page Lock Command
The algorithm for the Page Lock command is shown in Figure 4-9. Locking a page prevents erasing or writing new data
to the page. The Page Lock command is a two-bus-cycle operation—the first is the command itself, and the second
specifies the page to be locked. Once the Page Lock command has completed (i.e., the status no longer indicates busy),
status bit S4 should be checked to determine if an error occurred. S4 and S5 will be set if a command sequence error
occurred; only S4 will be set if the Page Lock failed. If any of the error status bits are set, they can only be cleared by a
Clear Status command.

Figure 4-9 · CoreCFI Page Lock Flow Diagram

Start

Write Command
Lock Page (0x60)
to Any Address

Write Command
Lock Page Confirm (0x01)
to Page Address to Lock

Read (poll) the Status Register
or Monitor the RY/BY# Pin

Status Register Bit 7
or RY/BY# Pin

Status Register Bits 4 and 5

Status Register Bit 4

Lock Successful Completion

Lock Failed with
Command Sequence Error

Lock Failed with Error

= 0

= 1

= 11

= 0

= 1

= 0
CoreCFI Handbook v2.0 29

Supported CFI Commands
Page Unlock Command
The algorithm for the Page Unlock command is shown in Figure 4-10. Unlocking a page enables erasing or writing new
data to the page. The Page Unlock command is a two-bus-cycle operation—the first is the command itself, and the
second specifies the page to be unlocked. Once the Page Unlock command has completed (i.e., the status no longer
indicates busy), status bit S5 should be checked to determine if an error occurred. S4 and S5 will be set if a command
sequence error occurred; only S5 will be set if the Page Unlock failed. If any of the error status bits are set, they can only
be cleared by a Clear Status command.

Figure 4-10 · CoreCFI Page Unlock Flow Diagram

Start

Write Command
Unlock Page (0x60)

to Any Address

Write Command
Unlock Page Confirm (0xD0)
to Page Address to Unlock

Read (poll) the Status Register
or Monitor the RY/BY# Pin

Status Register Bit 7
or RY/BY# Pin

Status Register Bit 4 and 5

Status Register Bit 5

Unlock Successful
Completion

Unlock Failed with Command
Sequence Error

Unlock Failed with Error

= 0

= 1

= 11

= 0

= 1

= 0
30 CoreCFI Handbook v2.0

Timing Diagrams
Timing Diagrams
An example write waveform is shown in Figure 4-11. Note that the device will become busy for an extended time for any
writes that require a write to the device array.

Figure 4-11 · CoreCFI Write Waveform

8 9 10 11 12 13 14

A1

D1 SN SN+1 SN+2

1 2 3 4 5 6 7 8 9

A0 A1

D0 D1

CLK

CE_N

WE_N

A

D

OE_N

RY_BY_N

CLK

CE_N

WE_N

A

D

OE_N

RY_BY_N
CoreCFI Handbook v2.0 31

Supported CFI Commands
An example write followed by a read is shown in Figure 4-12.

Figure 4-12 · CoreCFI Write–Read Waveform

1 2 3 4 5 6 7 8

AW

DW

CLK

CE_N

WE_N

A

D

OE_N

RY_BY_N

7 8 9 10 11 12 13 14 15

AR

DR

CLK

CE_N

WE_N

A

D

OE_N

RY_BY_N
32 CoreCFI Handbook v2.0

Timing Diagrams
An example read waveform, which crosses a read page boundary, is shown in Figure 4-13. Note that AbX to AbY
represents a transition from one read page to another, and thus, the subsequent output data DbY0 (associated with AbY0)
takes longer to become valid due to the time required to load the 16-byte read page buffer with the new page data.

Figure 4-13 · CoreCFI Read Waveform

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CLK

CE_N

OE_N

A[17:4]

A[3:0]

D

RY_BY_N

WE_N

AbX0

AbX

DbX0

AbX1 AbX2

DbX1

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AbX2

DbX2

AbY0

AbY

DbY0

AbY1

DbY1

CLK

CE_N

OE_N

A[17:4]

A[3:0]

D

RY_BY_N

WE_N
CoreCFI Handbook v2.0 33

5
Implementation Hints

This chapter provides various hints to ease the process of implementation and integration of CoreCFI into your own
design.

Usage with Internal Flash Memory
Proper operation of the CoreCFI design requires the use of the Fusion Flash memory. The Fusion Flash memory is an
integral part of the CoreCFI design—CoreCFI will not function properly without it. CoreCFI provides a transparent
interface to the Flash memory that should not be modified; CoreCFI should be connected to the Flash memory as
shown in the user testbench file corecfi_chip.v (or corecfi_chip.vhd) located in the coreconsole/CORECFI/rtl/<vhdl/vlog>/
test/user directory. If the interface is altered, it is likely that CoreCFI will cease to function properly.

It is anticipated that CoreCFI will be used as an interface for components external to the Fusion device. Components
internal to the Fusion device would see the best performance if they use a direct interface to the internal Flash memory.

The Fusion Flash memory used with CoreCFI can be programmed through the CoreCFI interface, or it can be pre-
programmed independently from the FPGA fabric by use of the FlashPro software and hardware (refer to the FlashPro

User’s Guide for details on how to program the Flash memory within Fusion devices). At a minimum, it is necessary to
pre-program the CFI ID codes associated with CoreCFI into the Fusion Flash memory.

The Fusion Flash memory Program operation writes 128 bytes of data, regardless of the actual write size desired, for a
given page (128 bytes) being written. If only one of the 128 bytes has been changed by the user, the other 127 bytes will
be written again with the unchanged value. Therefore, it is best to keep this in mind when writing to the Flash memory.
The endurance (lifetime) of the Flash memory will be maximized if the user minimizes single-location writes (e.g., write
all of the desired locations for a given page using a multi-write instead of multiple single writes). Refer to the Fusion
Family of Mixed-Signal Flash FPGAs datasheet for information on the Flash memory endurance specifications.

Generating and Programming the CFI Query Database
As previously described, use of CoreCFI requires that the Fusion Flash memory be initialized with the CFI ID codes.
Development the programming file is done through the Actel SmartGen tool. SmartGen can be used for CoreCFI by
selecting the CoreCFI client, adding it to the system, and generating the memory file for use by the Actel Designer tool.
The default CFI codes provided with CoreCFI are shown in Table 5-1 and are provided in the coreconsole/CORECFI/rtl/

<vhdl/vlog>/test/user directory as ìcorecfi_query.memî. Note that the data format is binary and that the ìSIZEî parameter
(offset 01 in Table 5-1) should be modified to specify the desired size of the nonvolatile memory (NVM) used by
CoreCFI.

Table 5-1 · Default CFI ID Codes

Offset Default Binary Value Hex Equivalent

00 01011010 5A

01 00010010 12

02 00000000 00

03 00000000 00

04 00000000 00

05 00000000 00

06 00000000 00

07 00000000 00

08 00000000 00
CoreCFI Handbook v2.0 35

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/flashpro_ug.pdf

Implementation Hints
09 00000000 00

0A 00000000 00

0B 00000000 00

0C 00000000 00

0D 00000000 00

0E 00000000 00

0F 00000000 00

10 01010001 51

11 01010010 52

12 01011001 59

13 00000000 00

14 00000000 00

15 00110001 31

16 00000000 00

17 00000000 00

18 00000000 00

19 00000000 00

1a 00000000 00

1b 00110000 30

1c 00110110 36

1d 00000000 00

1e 00000000 00

1f 00011000 14

20 00011000 14

21 00000100 04

22 00000000 00

23 00000001 01

24 00000001 01

25 00000001 01

26 00000000 00

27 00010010 12

28 00000010 02

29 00000000 00

2a 00000111 07

2b 00000000 00

2c 00000001 01

Table 5-1 · Default CFI ID Codes (continued)

Offset Default Binary Value Hex Equivalent
36 CoreCFI Handbook v2.0

Generating and Programming the CFI Query Database
When SmartGen is used to generate a programming file, it also generates a memory image file and an HDL file for use
in simulation. These files can be used to simulate the CoreCFI-based design with the desired memory initialization.
Refer to the SmartGen User’s Guide for details on the use of the SmartGen tool.

2d 00000000 00

2e 00000000 00

2f 11111111 FF

30 00000111 07

31 01010000 50

32 01010010 52

33 01001001 49

34 00110001 31

35 00110001 31

36 10000000 80

37 00000000 00

38 00000000 00

39 00000000 00

3a 00000000 00

3b 00000000 00

3c 00000000 00

3d 00110011 33

3e 00000000 00

3f 00000001 01

40 00000000 00

41 00000000 00

42 00000000 00

43 00000000 00

44 00000100 04

45 00000000 00

46 00000000 00

Table 5-1 · Default CFI ID Codes (continued)

Offset Default Binary Value Hex Equivalent
CoreCFI Handbook v2.0 37

http://www.actel.com/documents/genguide_ug.pdf

6
Testbench Operation and Modification

Verification Testbench
Included with all releases of CoreCFI is a verification testbench that verifies operation of the CoreCFI macro. A
simplified block diagram of the verification testbench is shown in Figure 6-1.

The verification test suite includes a verification testbench, a test driver, a set of test cases, and test configurations. The
testbench instantiates and interconnects the DUT (design under test), which is the CoreCFI macro; the Fusion Flash
memory behavioral model (BMOD); and the test driver. The test driver is used to provide an interface shell between the
testbench and individual test cases (note that the testbench is a common testbench for all test cases—i.e., the testbench
does not change from test to test). For each test case, there is a specific test configuration that associates the test case
with the test driver. Note that there are a number of test cases that must be run to fully verify the CoreCFI IP; this can
be done by running the runsim.do file.

Figure 6-1 · CoreCFI Verification Testbench

The source code for the verification testbench is only available with the CoreCFI RTL release. A compiled ModelSim
simulation is available with the Obfuscated and Evaluation releases.

Flash
Memory

Initialization
File

Test Configuration

Fusion
Flash

Memory
BMOD

Testbench

CoreCFI

Test Driver

Test Case

Test
Result

(log file)
CoreCFI Handbook v2.0 39

Testbench Operation and Modification
Verification Tests
CoreCFI is verified through a number of tests that exercise CoreCFI through the external interface. The CoreCFI
verification testbench uses the Fusion Flash memory behavioral model to simulate the behavior of the Flash memory in
Fusion devices. The memory behavioral model is provided (as a library cell) as part of Libero IDE for all Actel Fusion
products.

The verification testbench includes test procedures to check the following CFI operations:

• Read, Read Query, and Read ID Codes

• Single Write and Multi-Write

• Read and Clear Status

• Page Lock and Unlock

• Erase Page

Simple Application Testbench
An example user testbench is included with the Evaluation, Obfuscated, and RTL releases of CoreCFI. The user
testbench is provided in precompiled ModelSim format and in RTL source code for all releases (Evaluation, Obfuscated,
and RTL) for you to examine and modify to suit your needs. The source code for the user testbench is provided to ease
the process of integrating the CoreCFI macro into your design and verifying according to your own custom needs. A
block diagram of the user testbench is shown in Figure 6-2.

Figure 6-2 · CoreCFI User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to implement their
own designs.

The testbench for the example user design implements a subset of the functionality tested in the verification testbench,
described in the previous chapter. Conceptually, as shown in Figure 6-2, CoreCFI is instantiated together with a
behavioral microcontroller that controls the operation of CoreCFI via reads and writes to access internal registers.

Once you have familiarized yourself with the HDL source code for the user testbench, you may wish to customize,
recompile, and run the simulation, as described in the “Interface Description” on page 11.

CFI Command
Generator and

Response
Checker

Fusion
Flash

Memory
BMOD

CoreCFI

User Testbench
40 CoreCFI Handbook v2.0

CoreCFI Handbook v2.0 41

A
VHDL Testbench Support Routines

The verification testbench for the CoreCFI macro makes use of several support routines. The support routines are
described in this appendix for the VHDL verification testbench.

The VHDL support routines (procedures and functions) are provided within a package. The support routines are
referenced from within the verification testbench, via library and use clauses. To include these routines in a custom
testbench, add the following two lines:

library CORECFI_LIB;

use CORECFI_LIB.CoreCFI_pkg.all;

A brief description of the support routines is given below.

cfi_erase Perform the CFI Erase Page operation to erase a page in the Flash memory and wait for busy
to deassert.

cfi_single_write Perform the CFI Single Write command to write a single location in the Flash memory and
wait for busy to deassert.

cfi_multi_write Perform the CFI Multi-Write command to initiate a CFI multiple write command. The
parameter write_count must be set to the number of data elements to be written, minus one.
The buffer_write procedure must be used after this to fill the internal buffer and initiate the
program.

cfi_change_lock Perform the CFI Lock Page or Unlock Page command to protect or unprotect a page in the
Flash memory. The parameter lock should be set to TRUE to protect the page or to FALSE to
unprotect the page.

cfi_clear_status Perform the CFI Clear Status command to clear any latched bits in the status register.

cfi_read_status
Perform the CFI Read Status command to enter the Read Status mode. Use the procedure
flash_read for the actual data reads.

cfi_read_id Perform the CFI read ID codes command to enter the read ID codes mode. Use the procedure
flash_read for the actual data reads.

cfi_read_array Perform the CFI Read Array command to enter the Read Array mode. Use the procedure
flash_read for the actual data reads.

cfi_read_querry Perform the CFI Read Query command to enter the Read Query mode. Use the procedure
flash_read for the actual data reads.

proc_write Write a data value to the CFI interface. This is used by the higher-level CFI procedures to
write data to the CFI interface.

init_flash Initialize the CFI interface and wait for busy to deassert.

flash_read Read a data value from the CFI interface and verify the returned data. The parameter data_in
contains the expected value for the verification. Used after the cfi_read_* procedures to read the
data from the CFI.

flash_read_status Read the status data from the CFI interface. The parameter expect_data contains the expected
value for the verification, and the parameter expect_mask selects the bits to be verified (a "1" in
the mask for a bit position selects the bit for verification). Note that the device must be in Read
Status mode before using this procedure.

buffer_write Fill the CFI buffer with data for a multiple write. Note that the cfi_multi_write command
must be used prior to this to initiate the multiple write.

cfi_poll_busy Used within other procedures to poll busy while waiting for a command to complete.

B
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
CoreCFI Handbook v2.0 43

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
44 CoreCFI Handbook v2.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 43
telephone 44
web-based technical support 43
website 43

B
block diagram 5

C
Common Flash Interface (CFI) 5

commands 15
Clear Status 24
Erase Page 25
Multi-Write 27
Page Lock 29
Page Unlock 30
Read 16
Read Array 22
Read ID 21
Read Query 16
Read Status 23
Single Write 26
Write 16

ID codes 35
query database 35

compatibility 7, 15
configuration 5
contacting Actel

customer service 43
electronic mail 43
telephone 44
web-based technical support 43

CoreConsole 9
customer service 43

D
device

utilization and performance 6

E
Evaluation version 9

F
features 7

functional description 7

I
interfaces 11
internal Flash memory, usage 35

L
Libero Integrated Design Environment (IDE) 10
licenses 9

Evaluation 9
Obfuscated 9
RTL 9

M
memory, internal 35

O
Obfuscated version 9
overview 5

P
parameters 11
place-and-route 10
product support 43–44

customer service 43
electronic mail 43
technical support 43
telephone 44
website 43

Q
query database 35

R
RTL version 9

S
signals 11
simulation 10
synthesis 10

T
technical support 43
testbenches 39

support routines 41
CoreCFI Handbook v2.0 45

Index
user 40
verification 39

timing diagrams 31
read 33
write 31
write–read 32

typical application 6

U
user testbench 40

V
verification testbench 39
versions

Evaluation 9
Obfuscated 9
RTL 9

W
web-based technical support 43
46 CoreCFI Handbook v2.0

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom

Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200094-0 /3.07

	Introduction
	Core Overview
	Figure 1 · CoreCFI Block Diagram
	Figure 2 · CoreCFI Typical Application

	Device Utilization and Performance
	Table 1 · CoreCFI Device Utilization and Performance (minimum configuration)
	Table 2 · CoreCFI Device Utilization and Performance (maximum configuration)

	Functional Description
	Tool Flows
	Licenses
	Evaluation
	Obfuscated
	RTL

	CoreConsole
	Figure 2-1 · CoreCFI Configuration within CoreConsole
	Figure 2-2 · CoreCFI Configuration within CoreConsole - Testbench Selection

	Importing into Libero IDE
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Interface Description
	Parameters
	Table 3-1 · CoreCFI Parameter/Generic Descriptions

	Signals
	Figure 3-1 · CoreCFI I/O Signal Diagram
	Table 3-2 · CoreCFI I/O Signal Descriptions (continued)

	Supported CFI Commands
	Table 4-1 · Command Descriptions
	Read
	Write
	Read Query Command
	Figure 4-1 · CoreCFI Read Query Flow Diagram
	Table 4-2 · CFI Query Identification
	Table 4-3 · CFI Query System Interface Information
	Table 4-4 · CFI Query Device Geometry Definitions
	Table 4-5 · CFI Primary Vendor-Specific Extended Query (continued)

	Read ID Codes Command
	Figure 4-2 · CoreCFI Read ID Codes Flow Diagram
	Table 4-6 · CFI Identifier Codes

	Read Array Command
	Figure 4-3 · CoreCFI Read Array Flow Diagram

	Read Status Command
	Figure 4-4 · CoreCFI Read Status Flow Diagram
	Table 4-7 · Status Register

	Clear Status Command
	Figure 4-5 · CoreCFI Clear Status Flow Diagram

	Erase Page Command
	Figure 4-6 · CoreCFI Erase Page Flow Diagram

	Single Write Command
	Figure 4-7 · CoreCFI Single Write Flow Diagram

	Multi-Write Command
	Figure 4-8 · CoreCFI Multi-Write Flow Diagram

	Page Lock Command
	Figure 4-9 · CoreCFI Page Lock Flow Diagram

	Page Unlock Command
	Figure 4-10 · CoreCFI Page Unlock Flow Diagram

	Timing Diagrams
	Figure 4-11 · CoreCFI Write Waveform
	Figure 4-12 · CoreCFI Write-Read Waveform
	Figure 4-13 · CoreCFI Read Waveform

	Implementation Hints
	Usage with Internal Flash Memory
	Generating and Programming the CFI Query Database
	Table 5-1 · Default CFI ID Codes (continued)

	Testbench Operation and Modification
	Verification Testbench
	Figure 6-1 · CoreCFI Verification Testbench
	Verification Tests

	Simple Application Testbench
	Figure 6-2 · CoreCFI User Testbench

	VHDL Testbench Support Routines
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

