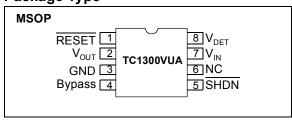


TC1300

300 mA CMOS LDO with Shutdown, Bypass and Independent Delayed Reset Function

Features

- LDO with Integrated Microcontroller Reset Monitor Functionality
- Low Input Supply Current (80 μA, typical)
- · Very Low Dropout Voltage
- 10 μsec (typ.) Wake-Up Time from SHDN
- · 300 mA Output Current
- Standard or Custom Output and Detected Voltages
- · Power-Saving Shutdown Mode
- · Bypass Input for Quiet Operation
- · Separate Input for Detected Voltage
- 140 msec Minimum RESET Output Duration
- · Space-Saving MSOP Package
- Specified Junction Temperature Range: -40°C to +125°C

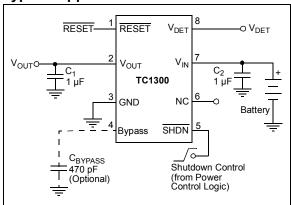

Applications

- · Battery-Operated Systems
- · Portable Computers
- · Medical Instruments
- · Pagers
- · Cellular / GSM / PHS Phones

Related Literature

- AN765, "Using Microchip's Micropower LDOs", DS00765.
- AN766, "Pin-Compatible CMOS Upgrades to Bipolar LDOs", DS00766.
- AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application", DS00792.

Package Type


General Description

The TC1300 combines a low dropout regulator and a microcontroller reset monitor in an 8-Pin MSOP package. Total supply current is 80 μ A (typical), 20 to 60 times lower than bipolar regulators.

The TC1300 has a precise output with a typical accuracy of $\pm 0.5\%$. Other key features include low noise operation, low dropout voltage and internal feed-forward compensation for fast response to step changes in load. The TC1300 has both over-temperature and <u>over-current</u> protection. When the shutdown control (<u>SHDN</u>) is low, the regulator output voltage falls to zero, RESET output remains valid and supply current is reduced to 30 μ A (typical). The TC1300 is rated for 300 mA of output current and stable with a 1 μ F output capacitor.

An active-low RESET is asserted when the detected voltage (V_{DET}) falls below the reset voltage threshold. The RESET output remains low for 300 msec (typical) after V_{DET} rises above reset threshold. The TC1300 also has a fast wake-up response time (10 µsec., typical) when released from shutdown.

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage	6.5V
Output Voltage	(V _{SS} - 0.3) to (V _{IN} + 0.3)
Power Dissipation	. Internally Limited (Note 6)
Operating Junction Temperature,	$T_J 40^{\circ}C < T_J < 150^{\circ}C$
Maximum Junction Temperature,	Tj150°C
Storage Temperature	65°C to +150°C
Maximum Voltage on Any Pin	(V _{SS} -0.3) to (V _{IN} +0.3)

*Notice: Stresses above those listed under "maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN DESCRIPTIONS

Pin	Description
RESET	RESET output remains low while V _{DET} is below the reset voltage threshold and for 300 msec after V _{DET} rises above reset theshold.
V _{OUT}	Regulated Voltage Output
GND	Ground Terminal
Bypass	Reference Bypass Input. Connecting an optional 470 pF to this input further reduces output noise.
SHDN	Shutdown Control Input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, regulator output voltage falls to zero, RESET output remains valid and supply current is reduced to 30 µA (typ.).
NC	No connect
V _{IN}	Power Supply Input
V _{DET}	Detected Input Voltage. V _{DET} and V _{IN} can be connected together.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{OUT} + 1V$, $I_L = 0.1$ mA, $C_L = 3.3$ μ F, $\overline{SHDN} > V_{IH}$, $T_A = 25$ °C, unless otherwise noted. **BOLDFACE** type specifications apply for junction temperature (**Note 8**) of -40°C to +125°C.

, , ,						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.7	_	6.0	V	Note 7
Maximum Output Current	IOUT _{MAX}	300	_	1	mA	
Output Voltage	V _{OUT}	 V _R - 2.5%	V _R ± 0.5%	 V _R + 2.5%	V	Note 1
V _{OUT} Temperature Coefficient	ΔV _{OUT} /ΔΤ	_	25	_	ppm/°C	Note 2
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	_	0.02	0.35	%	$(V_R + 1V) \le V_{IN} \le 6V$
Load Regulation	ΔV _{OUT} /V _{OUT}	_	0.5	2.0	%	$I_L = 0.1 \text{ mA to } I_{OUTMAX}, \text{Note 3}$

Note 1: V_R is the regulator output voltage setting.

2:
$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^6}{V_{OUT} \times \Delta T}$$

- 3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **4:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.
- 5: Thermal Regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for t = 10 msec.
- **6:** The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 4.0, "Thermal Considerations", of this data sheet for more details.
- 7: The minimum V_{IN} has to meet two conditions: $V_{IN} \ge 2.7V$ and $V_{IN} \ge (V_R + V_{DROPOUT})$.
- 8: The junction temperature of the device is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

ELECTRICAL CHARACTERISTICS (CONTINUED)

 $V_{IN} = V_{OUT} + 1V$, $I_L = 0.1$ mA, $C_L = 3.3$ μ F, $\overline{SHDN} > V_{IH}$, $T_A = 25$ °C, unless otherwise noted. **BOLDFACE** type specifications apply for junction temperature (**Note 8**) of -40°C to +125°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Dropout Voltage (Note 4)	V _{IN –} V _{OUT}	1	1 70 210	30 130 390	mV	I _L = 0.1 mA I _L = 100 mA I _L = 300 mA
Supply Current	I _{SS1}	1	80	160	μA	SHDN = V _{IH}
Shutdown Supply Current	I _{SS2}	1	30	60	μA	SHDN = 0V
Power Supply Rejection Ratio	PSRR	1	60	_	dB	f≤1 kHz, C _{BYPASS} = 1 nF
Output Short Circuit Current	I _{OUTSC}	1	800	1200	mA	V _{OUT} = 0V
Thermal Regulation	$\Delta V_{OUT}/\Delta P_{D}$	_	0.04	_	%/W	Note 5
Output Noise	eN	1	900	_	nV/Hz	f < 1 kHz, C_{OUT} = 1 μF, R_{LOAD} = 50 Ω, C_{BYPASS} = 1 nF
Wake-Up Time (from Shutdown Mode)	t _{WK}	1	10	20	µsec	$C_{IN} = 1 \mu F, V_{IN} = 5V,$ $C_{OUT} = 4.7 \mu F, I_L = 30 \text{ mA},$ See Figure 3-2
Settling Time (from Shutdown Mode)	ts	_	50	_	µsec	$C_{IN} = 1 \mu F, V_{IN} = 5V$ $C_{OUT} = 4.7 \mu F$ $I_{L} = 30 \text{ mA}, \text{ See Figure 3-2}$
Thermal Shutdown Die Temperature	T _{SD}		150	_	°C	
Thermal Shutdown Hysteresis	T _{HYS}	_	10	_	°C	
Thermal Resistance Junction to Case	RthetaJA	_	200	_	°C/Watt	EIA/JEDEC JESD51-751-7 4- Layer Board
SHDN Input High Threshold	V _{IH}	45			%V _{IN}	V _{IN} = 2.5V to 6.0V
SHDN Input Low Threshold	V_{IL}	_	_	15	%V _{IN}	V _{IN} = 2.5V to 6.0V

Note 1: V_R is the regulator output voltage setting.

2:
$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^6}{V_{OUT} \times \Delta T}$$

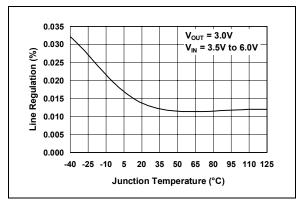
- 3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **4:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.
- 5: Thermal Regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for t = 10 msec.
- 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 4.0, "Thermal Considerations", of this data sheet for more details.
- 7: The minimum V_{IN} has to meet two conditions: $V_{IN} \ge 2.7V$ and $V_{IN} \ge (V_R + V_{DROPOUT})$.
- 8: The junction temperature of the device is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

ELECTRICAL CHARACTERISTICS (CONTINUED)

 $V_{IN} = V_{OUT} + 1V$, $I_L = 0.1$ mA, $C_L = 3.3$ µF, $\overline{SHDN} > V_{IH}$, $T_A = 25$ °C, unless otherwise noted. **BOLDFACE** type specifications apply for junction temperature (**Note 8**) of -40°C to +125°C.

is january temperature (New York is a to 120 c)								
Parameters	Sym	Min	Тур	Мах	Units	Conditions		
RESET Output								
Voltage Range	V_{DET}	1.0 1.2	_	6.0 6.0	V	$T_A = 0$ °C to +70°C $T_A = -40$ °C to +125°C		
Reset Threshold	V_{TH}	2.59	2.63	2.66	V	TC1300R-XX, T _A = +25°C		
		2.55	_	2.70		TC1300R-XX, T _A = - 40°C to +125°C		
		2.36	2.40	2.43		TC1300Y-XX, T _A = +25°C		
		2.32	_	2.47		TC1300Y-XX, T _A = -40°C to +125°C		
Reset Threshold Tempco	ΔV_{TH} / ΔT	_	30	_	ppm/°C			
V _{DET} to Reset Delay	t _{RPD}	_	160	_	μsec	$V_{DET} = V_{TH}$ to $(V_{TH} - 100 \text{ mV})$		
Reset Active Timeout Period	t _{RPU}	140	300	560	msec			
RESET Output Voltage Low	V _{OL}	_	_	0.3	V	$V_{DET} = V_{TH} \text{ min,}$ $I_{SINK} = 1.2 \text{ mA}$		
RESET Output Voltage High	V _{OH}	0.8 V _{DET}	_	_	V	V _{DET} > V _{TH} max, I _{SOURCE} = 500 μA		

Note 1: V_R is the regulator output voltage setting.


2:
$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^6}{V_{OUT} \times \Delta T}$$

- 3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **4:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.
- 5: Thermal Regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for t = 10 msec.
- 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 4.0, "Thermal Considerations", of this data sheet for more details.
- 7: The minimum V_{IN} has to meet two conditions: $V_{IN} \ge 2.7V$ and $V_{IN} \ge (V_R + V_{DROPOUT})$.
- 8: The junction temperature of the device is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

2.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Junction temperature (T_J) is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the Ambient temperature is not significant.

FIGURE 2-1: Line Regulation vs. Temperature.

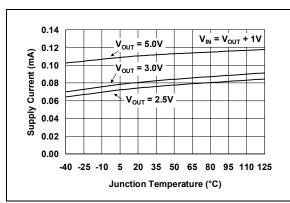
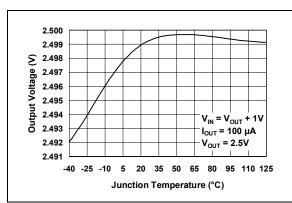
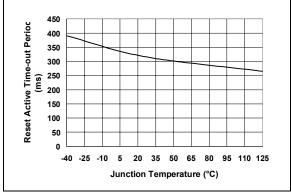




FIGURE 2-2: Supply Current vs. Temperature.

FIGURE 2-3: Normalized V_{OUT} vs. Temperature.

FIGURE 2-4: Reset Active Time-out Period vs. Temperature.

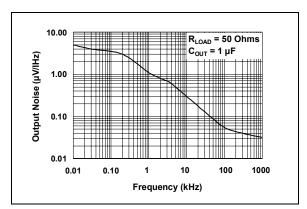
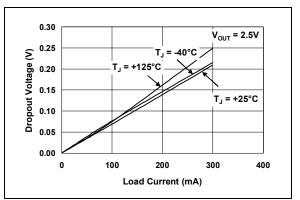
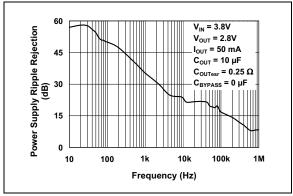
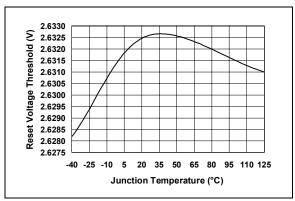


FIGURE 2-5: Output Noise vs. Frequency.


FIGURE 2-6: Dropout Voltage vs. Load Current (2.5V).

2.0 TYPICAL CHARACTERISTICS (CON'T)

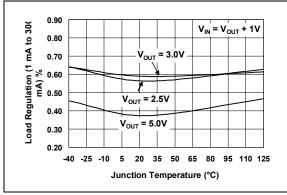

Junction temperature (T_J) is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the Ambient temperature is not significant.

FIGURE 2-7: Power Supply Rejection Ratio vs. Frequency.

FIGURE 2-8: Reset Voltage Threshold vs. Junction Temperature.

FIGURE 2-9: Load Regulation vs. Temperature.

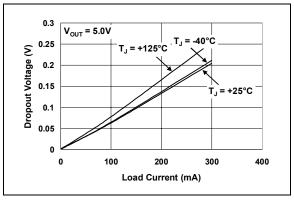
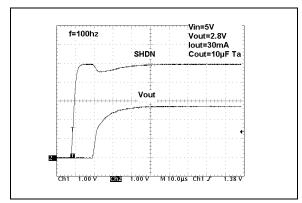
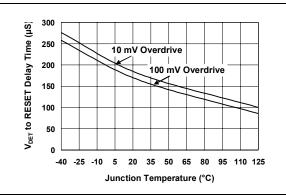
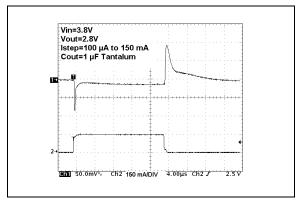
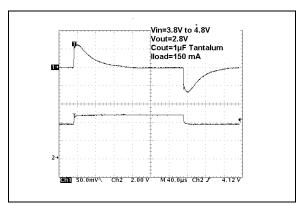


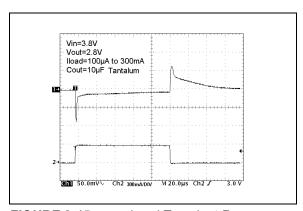
FIGURE 2-10: Dropout Voltage vs. Load Current (5.0V).

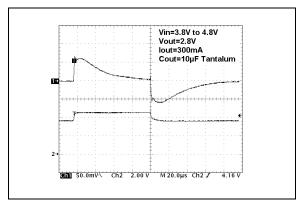



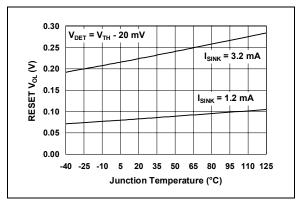

FIGURE 2-11: Wake-Up Response Time.


FIGURE 2-12: V_{DET} to Reset Delay vs. Temperature.

2.0 TYPICAL CHARACTERISTICS (CON'T)


Junction temperature (T_J) is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the Ambient temperature is not significant.


FIGURE 2-13: Load Transient Response 1 μ F Output Capacitor.


FIGURE 2-14: Line Transient Response 1 μ F Output Capacitor.

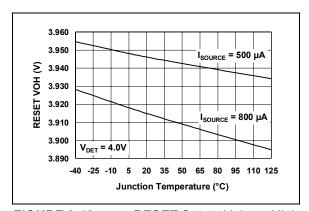

FIGURE 2-15: Load Transient Response 10 μF Output Capacitor.

FIGURE 2-16: Line Transient Response 10 μF Output Capacitor.

FIGURE 2-17: RESET Output Voltage Low vs. Junction Temperature.

FIGURE 2-18: RESET Output Voltage High vs. Junction Temperature.

3.0 DETAILED DESCRIPTION

The TC1300 is a combination of a fixed output, low dropout regulator and a microcontroller monitor/RESET. Unlike bipolar regulators, the TC1300 supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation over the entire specified operating load range (0 mA to 300 mA) and operating input voltage range (2.7V to 6.0V).

Figure 3-1 shows a typical application circuit. The regulator is enabled any time the shutdown input (\$\overline{SHDN}\$) is above \$V_{IH}\$. The regulator is \$\overline{shutdown}\$ (disabled) when \$\overline{SHDN}\$ is at or below \$V_{IL}\$. \$\overline{SHDN}\$ may be controlled by a \$CMOS\$ logic gate or an I/O port of a microcontroller. If the \$\overline{SHDN}\$ input is not required, it should be connected directly to the input supply. While in shutdown, supply current \$\overline{decreases}\$ to 30 \$\mu\$A (typical), \$V_{OUT}\$ falls to zero and \$\overline{RESET}\$ remains valid.

3.1 RESET Output

The RESET output is driven active-low within 160 µsec of V_{DET} falling through the reset voltage threshold. RESET is maintained active for a minimum of 140 msec after V_{DET} rises above the reset threshold. The TC1300 has an active-low RESET output. The output of the TC1300 is valid down to V_{DET} = 1V and is optimized to reject fast transient glitches on the V_{DET} line

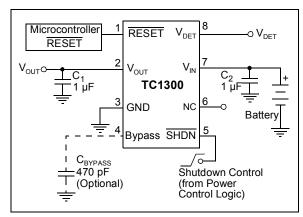


FIGURE 3-1: Typical Application Circuit.

3.2 Output Capacitor

A 1 μ F (min) capacitor from V_{OUT} to ground is required. A 1 μ F capacitor should also be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. As with all low dropout regulators, a minimum output capacitance is required to stabilize the output voltage. For the TC1300, a minimum of 1 μ F of output capacitance is enough to stabilize the device over the entire operating load and line range. The selected output capacitor plays an important role is compensating the LDO regulator. For the

TC1300, the selected output capacitor equivalent series resistance (ESR) range is 0.1 ohms to 5 ohms when using 1 μF of output capacitance, and 0.01 ohms to 5 ohms when using 10 μF of output capacitance. Because of the ESR requirement, tantalum and aluminum electrolytic capacitors are recommended. Aluminum electrolytic capacitors are not recommended for operation at temperatures below -25°C. When operating from sources other than batteries, rejection and transient responses can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

3.3 Bypass Input (Optional)

An optional 470 pF capacitor connected from the Bypass input to ground reduces noise present on the internal reference, which in turn significantly reduces output noise and improves PSRR performance. This input may be left unconnected. Larger capacitor values may be used, but results in a longer time period to rated output voltage when power is initially applied.

3.4 Turn On Response

The turn-on response is defined as two separate response categories, Wake-Up Time (t_{WK}) and Settling Time (t_{S}).

The TC1300 has a fast Wake-Up Time (10 µsec typical) when released from shutdown. See Figure 3-2 for the Wake-Up Time designated as t_{WK} . The Wake-Up Time is defined as the time it takes for the output to rise to 2% of the V_{OUT} value after being released from shutdown.

The total turn-on response is defined as the Settling Time (t_S) (see Figure 3-2). Settling Time (inclusive with t_{WK}) is defined as the condition when the output is within 2% of its fully enabled value (50 µsec typical) when released from shutdown. The settling time of the output voltage is dependent on load conditions and output capacitance on V_{OUT} (RC response).

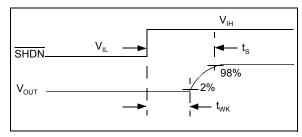


FIGURE 3-2: Wake-Up Response Time.

4.0 THERMAL CONSIDERATIONS

4.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when the die temperature exceeds 150°C. The regulator remains off until the die temperature drops to approximately 140°C.

4.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case *actual* power dissipation:

EQUATION

$$P_D \approx (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}$$

Where:

 P_D = worst case actual power dissipation V_{INMAX} = maximum voltage on V_{IN} V_{OUTMIN} = minimum regulator output voltage $I_{LOADMAX}$ = maximum output (load) current

The maximum allowable power dissipation, P_{DMAX} , is a function of the maximum ambient temperature (T_{AMAX}), the maximum recommended die temperature ($125^{\circ}C$) and the thermal resistance from junction-to-air (θ_{JA}). The MSOP-8 package has a θ_{JA} of approximately $200^{\circ}C$ /Watt when mounted on a FR4 dielectric copper clad PC board.

EQUATION

$$P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}$$

The worst case actual power dissipation equation can be used in conjunction with the LDO maximum allowable power dissipation equation to ensure regulator thermal operation is within limits. For example:

Given:

 V_{INMAX} = 4.1V V_{OUTMIN} = 3.0V -2.5% $I_{LOADMAX}$ = 200 mA T_{JMAX} = 125°C T_{AMAX} = 55°C θ_{JIA} = 200°C/W

Find:

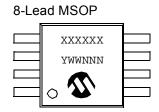
EQUATION: ACTUAL POWER DISSIPATION

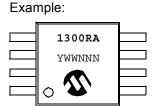
$$P_D \approx (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}$$

= $[(4.1) - (3.0 \times .975)]200 \times 10^{-3}$
= 220 mW

EQUATION: MAXIMUM ALLOWABLE POWER DISSIPATION

$$P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}$$
$$= \frac{(125 - 55)}{200}$$
$$= 350 \text{ mW}$$


In this example, the TC1300 dissipates a maximum of only 220 mW; below the allowable limit of 350 mW. In a similar manner, the maximum actual power dissipation equation and the maximum allowable power dissipation equation can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable $V_{\rm IN}$ is found by substituting the maximum allowable power dissipation of 350 mW into the actual power dissipation equation, from which $V_{\rm IN_{MAX}}$ = 4.97V.

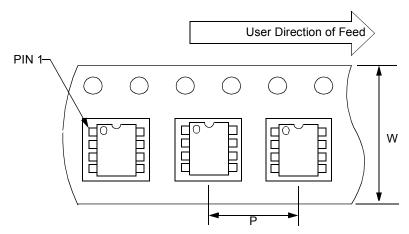

4.3 Layout Considerations

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads and wide power supply bus lines combine to lower θ_{JA} and, therefore, increase the maximum allowable power dissipation limit

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Part Number	Marking Code (XXXXXX)
TC1300R - 2.5VUA	1300RA
TC1300Y - 2.7VUA	1300YF
TC1300R - 2.8VUA	1300RB
TC1300R - 2.85VUA	1300RC
TC1300R - 3.0VUA	1300RD
TC1300R - 3.3VUA	1300RE

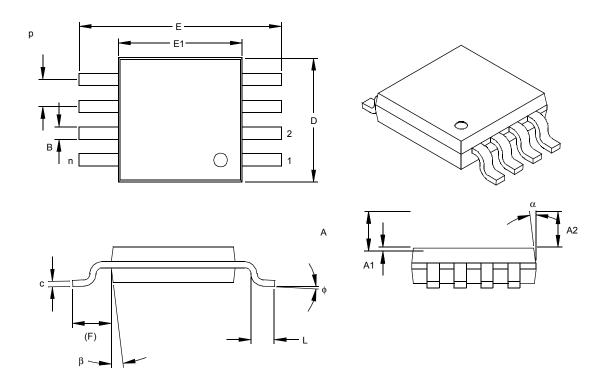

Legend: XX...X Customer specific information*
Y Year code (last digit of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.

5.2 Package Dimensions

Component Taping Orientation for 8-Pin MSOP Devices



Standard Reel Component Orientation for TR Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size:

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
8-Pin MSOP	12 mm	8 mm	2500	13 in.

8-Lead Plastic Micro Small Outline Package (UA) (MSOP)

	Units		INCHES		MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8				8
Pitch	р		.026			0.65	
Overall Height	Α			.044			1.18
Molded Package Thickness	A2	.030	.034	.038	0.76	0.86	0.97
Standoff §	A1	.002		.006	0.05		0.15
Overall Width	E	.184	.193	.200	4.67	4.90	.5.08
Molded Package Width	E1	.114	.118	.122	2.90	3.00	3.10
Overall Length	D	.114	.118	.122	2.90	3.00	3.10
Foot Length	L	.016	.022	.028	0.40	0.55	0.70
Footprint (Reference)	F	.035	.037	.039	0.90	0.95	1.00
Foot Angle	ф	0		6	0		6
Lead Thickness	С	.004	.006	.008	0.10	0.15	0.20
Lead Width	В	.010	.012	.016	0.25	0.30	0.40
Mold Draft Angle Top	α		7			7	
Mold Draft Angle Bottom	β		7			7	

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

Drawing No. C04-111

^{*}Controlling Parameter § Significant Characteristic

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-X.X</u>	X	<u>/XX</u>	
Device		erature ange	Package	
Device:	TC1300X-X.XXXX:		MOS LDO w/Shutdo Independent Delay	,
	TC1300X-X.XXXXTF	Bypass &	MOS LDO w/Shutdo Independent Delay pe and Reel)	
Output Voltages:	2.5V = 2.5 2.7V = 2.7			
RESET Threshold	2.8V = 2.8			
Voltages:	2.85V = 2.85			
- 2.4V = Y - 2.63V = R	3.0V = 3.0 3.3V = 3.3			
Temperature Range:	V = -40°C to +1	25°C		
Package:	UA = Micro Small	Outline Pac	kage (MSOP), 8-lea	ıd

Examples:

- TC1300R-2.5VUA: 300mA CMOS LDO w/ Shutdown, Bypass & Independent Delayed Reset, 2.5V output voltage, 2.63V RESET Threshold
- TC1300R-2.8VUA: 300mA CMOS LDO w/Shutdown, Bypass & Independent Delayed Reset, 2.8V output voltage, 2.63V RESET Threshold
- cown, bypass & medpendent Delayed Reset,
 2.8V output voltage, 2.63V RESET Threshold.
 c) TC1300R-2.85VUA: 300mA CMOS LDO w/
 Shutdown, Bypass & Independent Delayed
 Reset, 2.85V output voltage, 2.63V RESET
 Threshold
- d) TC1300R-3.0VUA: 300mA CMOS LDO w/Shutdown, Bypass & Independent Delayed Reset, 3.0V output voltage, 2.63V RESET Threshold.
- TC1300R-3.3VUA: 300mA CMOS LDO w/Shutdown, Bypass & Independent Delayed Reset, 3.3V output voltage, 2.63V RESET Threshold.
- f) TC1300R-2.85VUATR: 300mA CMOS LDO w/ Shutdown, Bypass & Independent Delayed Reset, 2.85V output voltage, 2.63V RESET Threshold, tape and reel.
- g) TC1300Y-2.7VUA: 300mA CMOS LDO w/ Shutdown, Bypass & independant Delayed Reset, 2.7V output voltage, 2.4V RESET Threshold.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

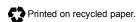
TC1300

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7966 Fax: 480-792-4338

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886

Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office

Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu

Shenzhen 518001, China Tel: 86-755-82350361 Fax: 86-755-82366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02